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ON THE ASYMPTOTIC SOLUTIONS OF THE EQUATIONS OF MOTION OF MECHANICAL SYSTEMS* 

S.D. FURTA 

The existence of solutions of the equations of motion of non-natural 

mechanical systems of a certain form which tend to a position of equilibrium 

when the time increases without limit is proved by the methods described 

in /l, 2/. The corresponding instability theorem is proved. 

1. Let us consider the motion of a mechanical system which is described by the equations 

_p)_+o, q-R”Iv 

R : R” (4’) x R” {q) --) R 
R = Rz + R, + R,, R, = ‘t,<K(q) 4’2 4’) 

(1.1) 

where Ri are homogeneous forms of generalized velocities of degree i. We shall treat (1.1) 

as the equations of motion of a reduced system which is obtained from a certain initial 

system by eliminating the cyclic coordinates, and R is a Routh function which depends on the 

cyclic constants, K is a positive-definite symmetric matrix and <,> is a scalar product in 

R". It may be assumed without any loss in generality that R, = (l(q), q’>,* I: R”+R” is a 

vector field and E(0) = 0 /3/. Let the reduced force function R. = Y, the components of 

the matrix K and of the vector field 1 be analytic functions of the generalized coordinates 
(we shall assume the values of the cyclic integrals to be constant). 

Let us assume that the origin of coordinates 17 = 0 is the equilibrium position of system 

(1.1) V’(O)=0 and V(O)=O. We shall say that a solution of (1.1) q(t)+0 is asymptotic 

if q(t)+0 as t++m. If the function V is absolutely negative in a certain neighbourhood 

of the equilibrium Q = 0, the position of equilibrium is stable (Routh's theorem /4/j and 

there are no asymptotic solutions. 

2. s uppose 

where v,; and the components 1, are homogeneous forms of degree k. 

Theorem. If vm+r can take positive values and s> [(m - 1)/2], a solution of Eq.(l.l) 

exists which is asymptotic to the position of equilibrium q = 0 and this position of 

equilibrium is unstable. 
In the case when m = 1, the proof of instability constitutes Salvadori's theorem /5/ 

and the existence of an asymptotic solution follows from the Lyapunov theorem on conditional 

asymptotic stability /6/. 
Let us prove the theorem for the case when m> 1. We shall write the equation of motion 

in "geodesic" form 

Q ** = r (49 4') + Q (4) C7' + f (q) 
I': R" {q} x R" {q’} +R" 
R: RR (q} + Rn2 

(2.1) 

Q (9) = K-l (4) (( ;fl; (1 (n)))T - $ (1 (u))) 

where Bl/aq is the Jacobian matrix of the field 1, and r is a mapping which is quadratic with 

respect to q’, the coefficients of which are the Christoffel symbols of the metric da2 =1 

‘l&K (q)dq,dq>. The expansion of P(q) in a Maclaurin series has the form 
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Let the system be written in normal coordinates (K(O)= E, E is a unit matrix). The 

expansion of f(q) then has the form 

3. After substitution of the independent variable r = ln t, Eqs.CZ.1) are written in 
the form (here the dots signify differentiation with respect to z) 

F (q, r) = 4" - (i + r (q, 4') + erQ (4 q' + ezTf (q)) = 0 (3.1) 

We shall seek a solution of Eqs.(3.1) in the form of the series 

d’) =( _.j<k r/kjp-Kk'Tj 

Cak=(2kk)/(m-I), qkjER", k,j~Nu(O} 

and we shall seek the coefficients qkj with the help of induction which increases with respect 
to k and decreases with respect to j. Let us write 

q(&&zkFckT, q*(r)=jbhE+ 

q” (T) = $ cp&’ 

ak = cm$jGk qf+jl 
brr = 3 qkj+l 

(m-1)jSk 

(- jkT + i): ck- cm_zjck VkjTj-’ (ck2T2 - 2itikr + i (i - 1)) 

We substitute these expressions into (3.1) and equate the coefficients of e-L'. We 
specify that 

qk = 2 aie-‘i’, xk= F (qn, T) 
i<S-2 

and substitute qz = q,,,,eL~ into (3.1) and collect the terms in e-to'. The function r (42, Qz') 
does not yield terms with e-' to a power which is less than &. By virtue of the fact that 
the inequality s> [(m - I)/21 is satisfied, the minimal power of e-T which the function 

4 (q2) qz' yields is equal to cl. In order to find qoo we have the equation 

w.Jqoo = urn+1 (Poll), 2 cm + 1) vo= (m 

Let e, be the point of the maximum of u,,,,, on a unit sphere. According to the condition 
this maximum is positive and, consequently, 

&+I (4 = xeOI x > 0 

and the above-mentioned equation can be satisfied by putting qoo = de,,, where cl = (v,/x)'l(m-1). 
When this is done, 5% contains terms with e-' to powers not less than cl. 

Let us now estimate the eigenvalues of the operator I$,,+~ (PO,,). According to Euler's 
theorem on homogeneous functions 

u,,,+~ (qoo) e. = d”?” m+l (4 e0 = (v0mln) urn VI (e0) = vme0 

Since e, is the point of the maximum of v,,,+l on the unit sphere, the characteristic 
numbers of the operator uk+t (qoo) which acts on the invariant subspace e,l will be non- 
positive (eel is a subsapace perpendicular to eo). 

Let the coefficients a,, . . ..pk_?. b,, . . ., bh-2, e,, . . .,, 0-2 be found and let zk = F (qk, z) 
contain terms with e-r to powers not less than &_1. We find ak_,, b&_, and ck-1 by substituting 
qr+l into (3.1) and collecting the terms in e-'i-l'. The expressions r (qh.+l, q;+l) and eQ (qk+l) 
qk+l (k - 1)-s do not vield coefficients. These coefficients satisfy the equation 

CL-I - b:,-l - V,+I (400) ak-1 = yk-1 (3.3) 
where Yk_, is a certain "polynomial" of a,, . . ., CZ,._~, b,, . . ., bk+. co, ., et+. 

Let 1 < k < m, then up+ = q(k-_l)O, bkvl = - &-lq+l,o, CA-I = 62-1qp-l)o. Eq. (3.3) takes the form 

. 
Vk-&k-l)o - hn+~ t'?OO) !?(k-110 = yk-l 
v*= v+2)@+k+1) 

cm_ ,,* , vOm=vm-l 

(3.4) 
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It is obvious that the quantity Yk_, is independent of 7. When 1 <k< m, the matrix 
(v&.-t E - uG+~ (~~~)) is non-singular and qIO, . . ., q<m-t)o are therefore found uniquely. 

Let k>m. It can be shown that the maximum power of r which is contained in Y&_, 
is equal to [(k - I)/(n - I)]. Let us represent Y+l in the form 

and, by equating terms in (3.3) with the same powers of Z we obtain 

VG-lQ(k-l)j - vk+l (qO0) q(h-1)j - rlk-lq(k-l)(j+l) + 
(f + 1) (i + 2) Q(k-l)(j+a) = #?I 

"(lk= 
@k-f-~+3)(i+ 1) 

m-l , j < 1, I = [fk - I)/@ - I)] 

P(k-l)(c+n = m-1f(lt2> = 0 

(3.5). 

Y$..,, are solely dependent on the coefficients qrs (m - i)s< r< k - 1. Since the matrix 

(v6_$ - I&+~ (qoo)) is non-singular when k> m, by using induction which decreases with respect 

to j, it is possible to find the coefficients qg‘rr_l,i uniquely. 
Finally, let us consider the case when k = m. The quantity Y,l does not contain power 

of T and one may therefore write 

yF,_, = Y$!, =aeo + f, PER, fE&- 

To determine @+I) o,g(m-~)l, we then have the system of equations 
" 

~m-lQ(m-Ifs - ~~+l(~oo)~~~-l)o - %-l~(?n-I)1 =mo + f 
. 

%+-1%n-1n- ~m+lt~oo)~~m-i)~ =fl 

(3-C) 

BY Putting 4~,-~)l= - (ck-I) eO, we satisfy the second equality and we solve the first 
equality in the subspace e,,I where the operator (z.,,_~E - ii+, (qoo)) is non-singular. 

4. Let us now consider the Banach spaces Et!,,E$ti, :Eti, is the space of the functions 

q: h,, + =) -f R which are continuously doubly differentiable in the infinite semi-interval 

[To, i- cc), To > 0 and for which the norm 

II P nt!a = ;W& (@ [ IQ” (T) I + I (I’(t) I f I fI (T) I 11, a > 0 

is finite. E(O) % 0. is the space of the functions p: I-c,, + OO)-+ R which are continuous in 

1x0, i- @J) and for which the norm 

is finite and the differential operator 

Lemma. Let Ret+ P2> -aI where k1 and p2 are the roots of the equation 

p2+up+b=0 

Then, the operator D has a bounded inverse and, for any peE$t, 

II D--P II::’ a d C !! P It! a 

and the constant C>O is solely dependent on a, b, a and independent of zo. 

Proof. By using the method of the variation of constants to solve the differential 
equation with the "initial" conditions 

9.' -i- aq' -t b = p Is), p E E$'!= 
q(+ =J) = 4.(-t m) = 0 

it is possible to obtain the explicit formulae 

(=w 

(4.3 

(4.3) 
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Z (T, p) = +f e-p6p (s) ds 

T 

II (z) = ‘f e-V* sin asp (s) ds 

r 

Zr (T) = +f e+ co8 asp (8) ds 

r 

By virtue of the fact that Re Y1,pl>-cc, all the integrals in (4.3) converge. By dif- 
ferentiatingrelationships (4.3) and majorizing the corresponding integrals by exponentially 
decaying functions, we obtain the estimates 

for the solution of (4.2) since the modulus of the integral Z(t,Y) is majorized, for example, 

by the function 11 p lc!a (a + p)-V(a+@)r. 

The operator D therefore has a bounded inverse and (4.1) follows from (4.4). 
If series.(3.2) converges, an asymptotic solution of (3.1) exists. We shall find the 

solution of Eqs.(3.1) in the form 4=qm f Y, where qm is the approximate solution found on 
the (m- I)-th step and y is an unknown series of the form of (3.2) which is uniformly 
convergent in a certain infinite semi-interval It,,, + oo),zO>O when k>m--l. 

Let us now consider three examples of the spaces of such series. B'" 
r.. a are the C'- 

spaces of the vector functions Y:[r,,, + co)-tR" which are representable in the form of the 
series (3.2) when k>m-1 with the norms 

II Y II !ii.=~~~{e.~lsrrY(o(,)J/l} 

Z= 0, 1, 2, c = (m + 1 + 6)/(m - I), 0 < 6 < 1 
B(o) 

.z 03 al> @!a3 Bg;a 

We now consider the differential operator 

D:B(,l!,-B;!,; D=+$ - &6,&w) 

and expand R” as an orthogonal sum of the characteristic uni-dimensional subspaces of the 

operator &+I (qoO). Let PI be the projector onto the subspace which corresponds to an eigen- 
value h: 

PAD=D~P&; DA=-&-& 

Let US now consider the roots of the equation ~2- p - h=O. When h,< --'jar we have 

Ra Y1, FL* = 'i, and, when -r/p( h< O,the roots are real and belong to the interval IO; 11. In 

the case of the operator u",+l(qoo), there is only a single positive characteristic number 
h= v,_l= mvo. In this case Y1= 2ml(m - I), p2= - (m $ l)l(m- 1). In any case Ra Y17 I.%> 
--a, CA= (m + 1 $- 6)l(m- 1) and, by virtue of the lemma, the operator Dh is invertible and 

Since the space Rn is 
uniform with respect to h. 

where C> 0 is independent 
Let us write (3.1) in 

II D?P IIt! a 6 II Di’p II?! a d C (A) II p 11:: a 
finite-dimensional, it is possible to make the given estimate 
Consequently, the operator D is invertible and, for any p EBB!, 

II D-‘P I!:!adC II P ll;!a 

of 70. 
the form of a functional equation 

Y =0-'@(y) (4.5) 
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By using the technique in /2/, it is possible to obtain the estimate 

II @ (Yl) - Q (Y,)@!ar d C, (rll) II Yl - YzIl:!,la (4.6) 

Also, C, (.c,)+ 0 + as 7" -) + ~0 and Y, and Y, belong to a sphere of radius L in B$, where 

L = 2 II &711?,c0 Consequently, for sufficiently large r,,D-Id) (y), it will be a compacting 
operator on a certain sphere in Bz&. Hence U-'@(y) has a fixed point /7/ i.e. Eq.(4.5) has 

a solution in the form of the convergent series (3.2) when k> m- 1 which also proves the 
convergence of the formal solution which has been constructed earlier. 

Eqs.(2.1) then have a particular asymptotic solution in the form of the uniformly con- 
verging series 

q(t)- (in$jss9*jl-txlnit (4:7) 

5. The time substitution t -, c - t transforms the system being considered with a Routh 
function R= R, + R, -t R, into a system with a Routh function R-=m R, - R, + R,.~owever, the 
conditions of the theorem are invariant with respect to such a substitution and the asymptotic 
solution will therefore also exist in the case of a system with R-whence it follows that 
trajectories will exist for the initial system which emerge onto the boundary of a sphere of 
fixed radius from a neighbourhood of the equilibrium which isas small as may be desired over a 
finite time, that is, there is instability. The theorem is thereby completely proved. 

This theorem is an extension of the theorems /l, 2/ concerning the existence of asymptotic 
trajectories on unnatural systems. We note that, under the conditions of the theorem, con- 
stancy of the sign of the part of the Hamiltonian function which is independent of momenta 
has not been stipulated and this theorem therefore generalizes the result in /0/ in a known 
sense. 

A stability theorem has been formulated in /9/, the proof of which, presented in /9/, 
contains a number of inaccuracies although, when judged as a whole, the theorem is true. 

Let 1f(p,q) be the Hamiltonian function of a certain mechanical system which satisfies 
the conditions of the theorem in /9/. It may then beshownthat H,(q) = H(u, q)<O forany qE 

“;+, where vE+ = (Q E R": Ij 911 <E, V(q)>O) is non-void and connected. 
We shall now show that systems exist which do not satisfy the conditions of the theorem 

in /9/ but which satisfy the conditions of the theorem in this paper. 
Let us consider a system with a Routh function 

Here q1 = q2 = 0 is the position of equilibrium, V (ql, q2) = va (ql, ql) = L/rq23 takes positive 
values when q2>0 and the order of smallness of the terms accompanying ql’,qd’ in R1 is equal to 
three, that is, there is instability according to the theorem presented in this paper. 

The Hamiltonian function of the system under consideration is equal to 

H (PI, P2, q1. an) = ‘/* (PI” + PA - a* km - 

pp?z) + H, (Sl, nz), 2Hcl (919 +a) = 4a4 (d $- 91*) - 4r3 

It is obvious that H,(q,,q,) can take positive values when qI> 0 in a neighbourhood of 
41 = 91 = 0 which may be as small as may be desired, that is, this system does not satisfy 
the conditions of the theorem in /9/. 

1. 

2. 

3. 
4. 
5. 

6. 

7. 

The author is grateful to V.V. Kozlov for formulating the problem and for his help. 
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ON A MEASURE OF THE CLOSENESS OF NEUTRAL SYSTEMS TO INTERNAL RESONANCE* 

YA.M. GOL'TSER 

For certain classes of parametrically perturbed resonance systems that 
are neutral in a linear approximation, a quantitative characteristic is 
introduced for the closeness of the system of resonance: the magnitude of 
the critical detuning value for resonance 8* at which the change in 
stability occurs as the system withdraws from resonance. The problem of 
finding this critical value is made complicated by the non-linear nature 
of the change in stability in neutral systems. It is solved below for 
third-order resonances in a situation that guarantees the passage of 
instability into asymptotic stability as the system withdraws from 
resonance. 

Knowledge of the quantity 6. enables the strong instability domain 
/l, 2/ in parameter space to be estimated, enables the danger of 
resonance to be characterized, and enables the structural parameter in 
the system, the shift of the resonance phases, to be clarified, whose 
variation would enable the danger of resonance to be increased or reduced. 

1. Formulation of the problem. Fundamental assutnptions. In the Z-dimensional 
real space R' we consider the system of differential equations that depends continuously on 
the parameter FED 

where D C_Rd is a certain closed d-dimensional domain containing the origin, and F(J) are 
L-dimensional vector forms of j-th order whose coefficients are almost periodic functions of 

t uniformly in p E D. 
Let the matrix A(p) have n pairs of different purely imaginary eigenvalues fivs(P),s= 1, 

* . *, n in D while the remaining eigenvalues have negative real parts in D. 
Retaining the definitions from /3/, we consider (1.1) to be an F-system and there is a 

k-th -order resonance therein for p=O (m,>O are integers): 

h=<m, v (0)) E N*Ik, na= fm,, . . . . 4, k=Itif=ml+...+~. 0.8 

The concepts of the F-system and the set g,lk are described in detail in /3/. We recall 
that the continuous normal form of F-systems is reducible to autonomous form while Not* is 
contained in the minimum modulus generated by the spectrum of the non-linearity coefficients. 

We will confine ourselves to studying a purely critical system when l=2n. The case 
1>2n reduces to it by using the reduction principle /4/. 

0% * 
In addition to the initial parameters it is convenient to introduce the parameters err 
. tr %)and the resonance detuning 6 by setting 

a6 (I*) = Ire (~1 - va IO), 6 @L) = <m, s (CL)> 

The equation 8~0 defines a certain k-resonance surface I'k in D. 
The k-resonance surface is mapped into a k-resonance plane II,: <m,e(p)>=O in the 


